COMPLETENESS OF REPORTING OF MEASLES, WHOOPING COUGH, AND CHICKEN POX AT DIFFERENT AGES ${ }^{1}$

Hagerstown Morbidity Studies: Suppiement to Study No. II ${ }^{3}$
By Edgar Sydenstricker, Statistician, and A. W. Hedrich, Consultant, United States Public Health Service

In almost any serious study of disease incidence, the variation with age is an important question. Graphs showing the age curves of the various diseases are frequently included in text books of epidemiology and public health. Sometimes, indeed, the basic mode of public health attack rests fundamentally upon age variations; for example, it has been quite frequently urged (Brownlee (1), Godfrey (2), Ruhland (3)) that the most promising procedure in combating measles mortality lies in the protection of infants and very young children against infection, because the case fatality of the disease is very much greater in infancy than in the later years of childhood.

In practically all instances, morbidity studies necessarily rest upon cases reported to the health departments by physicians; and it is generally recognized that some diseases are reported quite incompletely. In the Hagerstown study it was found that 64.1 per cent of the cases of measles were seen by physicians, and that of these cases 40.3 per cent were reported to the health department, the net result being that only 25.8 per cent of the entire case incidence was reported (4).

The question therefore arises: Is this incompleteness of reporting the same at all ages? If, for example, reporting is decidedly better in the school ages, due possibly to the activities of school physicians and nurses, then many of the published quantitative statements as to age variation in communicable diseases, and inferences based thereon, would be subject to more or less revision.

In the present paper, the Hagerstown data are analyzed in order to determine whether the completeness of case reporting in that city was constant with age; and, if not, what the type of variation was.

[^0]It will be recalled that, in the study, about a fourth of the population of the city was visited by trained investigators at intervals of about six weeks during a period of 28 months. It seems permissible, therefore, to accept the case records so obtained, particularly for diseases of more than a few days' duration, as practically complete for the canvassed population.

It is inpracticable at this late date to obtain a record of the cases in the canvassed population that were reported to the local health department. The canvassed population, however, was not confined to one or two sections of the city, but represented nearly all sections and white persons of various economic and social classes. It would, therefore, seem reasonable to accept the incidence rates, as found in the canvassed population, as closely approximating the actual rate for the white population of the city as a whole.

The record of the number of reported cases for the whole city of Hagerstown is available in convenient age groups from the Maryland State Department of Health.

Table 1 shows the age incidence of measles, whooping cough, and chicken pox (a) among the white surveyed population as indicated by cases found by periodic canvasses, and (b) among the white population of Hagerstown as indicated by cases reported to the local health department. Figure 1 shows graphically the rates for the three diseases, semilogarithmic charts being used in order that the shape of the curves would be comparable whether the actual rates were high or low. The rates are given in 2 -year age groups up to 10 years.

Table 1.-Incidence of certain communicable diseases at specific ages among the white population of Hagerstown, Md., as found by periodic canvasses and as reported to the local health department, calendar years 1922 and 1929

Age (years)	Canvassed group (white)						
	Mean population ${ }^{1}$	Number of cases found by periodic canvasses, 1922-23			Mean annual case rato per 1,000 (breed on cases found by periodic canvasses)		
		Measies	$\begin{aligned} & \text { Whoop- } \\ & \text { ing } \\ & \text { cough } \end{aligned}$	Chicken pox	Measles	$\begin{aligned} & \text { Whoop- } \\ & \text { ing } \\ & \text { cough } \end{aligned}$	$\begin{gathered} \text { Chicken } \\ \text { pox } \end{gathered}$
Under 2.	228	102	67	25	156. 4	102.8	38.3
2 and 3--	288	112	56	37	194.4	97.2	64.2
4 and 5	373	137	69	49	183.6	92.5	65.7
8 and 7 -	400	131	56	54	163.8	70.0	67.5
8 and 9.	352	46	21	10	65.3	29.8	14.2
Under 5.	760	270	154	80	177.6	101.3	52.6
5 to $9 \ldots$	979	258	115	85	131.8	58.7	48.5
10 to 14.	788	26	11	9	16.3	6.9	5.6
15 and over	4,887	6	10	1	. 6	1.0	. 1
All ages..-	7,424	560	${ }^{2} 291$	185	37.7	19.6	12.5

[^1]Table 1.-Incidence of certain commanicable diseases at specific ages among the white population of Hagerstown, Md., as found by periodic canvasses and as reported to the local health department, calendar years 1922 and 1923-Continued

Age (years)	City of Hagerstown (white)						
	Mean population ${ }^{3}$	Number of cases reported to local health department 1922-23			Mean annual case rate per 1,000 (based on cases re ported to local health de partment)		
		Measles	Whooping cough	$\underset{\text { pox }}{\text { Chicken }}$	Measles	Whooping cough	$\underset{\text { pox }}{\text { Chicken }}$
Under 2.	1,257	47	34	10	18.7	13.5	4.0
2 and 3.	1,208	107	47	12	44.3	19.5	5.0
4 and 5.	1,175	154	39	24	65.5	16.6	10.2
6 and 7.	1,169	172	30	44	73.6	12.8	18.8
8 and 9 .	1,165	72	18	18	30.9	7.7	7.7
Under 5..	3,054	232	105	39	38.0	17.2	6.4
5 to 9	2,920	320	63	69	54.8	10.8	11.8
10 to 14.	2,491	28	14	12	5.6	2.8	2.4
15 and over.	19,872	13	4	2	. 3	. 1	. 05
All ages.	28,337	593	186	122	10.5	3.3	2.2

${ }^{2}$ By graphic graduation of 1923 estimates from U. S. Census data.
It may be seen from Figure 1 that the age curves as indicated by the more complete data from the canvassed population vary considerably from those indicated by the cases reported to the department of health. In the case of measles, the maximum incidence as revealed by the canvass occurs at from 2 to 5 years of age, whereas the reported incidence indicates a maximum at 6 to 7 years of age. Beyond this age, the two curves decline in a fairly similar way.

In the case of whooping cough, the maximum incidence as revealed by the canvass occurs under two years of age and the maximum reported incidence occurs from 2 to 3 years of age, both maxima being well under school ages.

In the case of chicken pox the incidence found in the canvassed population is about as high at ages 3 to 6 as at 6 to 7 years, but the reported cases have a distinct maximum at 6 to 7 years, the rates under school ages being very much less than the rate at 6 to 7 years of age.

If the rates in the canvassed population be assumed to be representative of the rates for the city as a whole, we may approximate the completeness of reporting at various ages by computing the percentage that the reported incidence rate is of the rate in the canvassed population. Such percentages are shown in Table 2 and Figure 2.

Figure 1.-Case rates for certain diseases at specific ages among the white population of Hagerstown, Md., as found by periodic canvasses and as reported to the local health department, calendar years 1922 and 1923

Table 2.-Estimated completeness of reporting to the health department of certain communicable diseases at specific agcs, Hagerstown, Md., 1922 and 1923

Age (years)	Estimated per cent of cases that were reported		
	Measles	Whooping cough	Chicken
Under 2.	12.0	13.1	10.4
4 and 5.	35.7	25.3	15.8
6 and 7.	44.9	18.3	27.9
8 and 9...	47.3	25.8	54.2
Under 5.	21.4	17.0	12.2
5 to 9 10 10	${ }^{41.6}$	18.4	24.3
15 and over.-.-.-.	50.0	${ }_{10.0}$	52.0
All ages.	27.9	16.8	17.6

The curves representing the completeness of reporting at different ages differ somewhat in form, but they suggest that, in Hagerstown,

Figure 2.-Estimated completeness of morbidity reporting of certain communicable diseases at specific ages, Hagerstown, Md., calendar years 1922 and 1923.
there is a tendency for reporting to be better in the early school years (6 to 9) than in the preschool ages. Thus, in the case of measles, the reporting from ages 6 to 9 was by this calculation about 45 per cent complete, while in the earlier years the reporting averaged less than 25 per cent complete.

Data collected by E. S. Godfrey, which are as yet unpublished, indicate that in a survey of Albany, N. Y., the completeness of measles case reporting was found to be 40 per cent for ages under $1 ; 49$ per cent for all ages under 5 ; and 62 per cent for ages 5 to 9 . The

Albany findings are seen to be in qualitative agreement with the Hagerstown results in indicating poorer reporting in the younger ages, but the deficiency in the early ages is less pronounced in Albany than in Hagerstown.

There is, of course, a possibility of appreciable error in assuming that the rates in the canvassed population are representative of the rates for the population of the city as a whole. It may be recalled that, according to Hagerstown Study No. II, the number of cases of scarlet fever actually reported to the health department was slightly more than would be expected on the basis of the number of cases seen by physicians in the canvassed population. However, only 34 cases of scarlet fever occurred in the canvassed population, and the possibility of error would, therefore, be considerably greater in scarlet fever than in measles, whooping cough, and chicken pox with 568 , 374 , and 232 cases, respectively, occurring in the canvassed population during the 28 -month period of observation.

It should be noted that Hagerstown Study No. II considered the whole 28 -month period of observation; but, because of the difficulty of getting records for the city of Hagerstown, it was expedient in this study to use only the calendar years 1922 and 1923. Moreover, in Study No. II, it was attempted to estimate the percentage of cases seen by physicians that were reported to the health department, whereas in the present study the estimates of completeness of reporting relate to all cases, whether or not they were seen by physicians. Of course, the latter percentages are smaller than those shown in Study No. II, because a considerable proportion of these cases were not attended by a physician, and, hence, were practically all unreported.

Table 3 shows the percentage of cases of different ages that were attended by a physician.

Table 3.-Percentage of cases of different ages that were attended by a physicianwhite families in the Hagerstown canvassed population, 1922 and 1923

Age (years)	Total number of cases 1			Number of cases attended by a physician			Percentage of cases attended by a physician		
	Measles	Whoop- ing cough	Chicken pox	Measles	$\left\|\begin{array}{c} \text { Whoop- } \\ \text { ing } \\ \text { cough } \end{array}\right\|$	Chicken pox	Measles	Whoop- ing cough	Chicken pox
Under 2.	100	65	24	64	37	13	64.0	56.9	54.2
2 and 3.	112	54	37	78	29	18	60.6	53.7	48.6
4 and 5.	133	66	49	82	28	15	61.7	42.4	30.6
6 and 7.	129	56	54	90	20	32	69.8	54.5	59.3
8 and 9.	45	20	10	29	11	5	64.4	55.0	50.0
Under 5	287	150	79	179	78	37	67.0	52.0	46.8
8 to 9	252	110	95	164	57	46	65.1	51.8	48.4
10 to 14.	28	11	9	15	3	4	57.7	27.3	44.4
15 and over	,	10	1	5	8	1	83.3	30.0	100.0
All ages	551	2282	184	363	${ }^{2} 142$	88	65.9	50.4	47.8

[^2]It would not appear that the greater incompleteness of reporting in the pre-school ages is due to fewer cases being seen by physicians. In fact, the percentage of cases that were attended by a physician is in the case of measles and whooping cough slightly higher for children under 5 years than for those 5 to 9 years of age.

To summarize: The purpose in presenting the data of this study is two-fold-first, to indicate that very probably completeness of reporting to health departments varies with the age of the cases, and that, on this account, many tables showing age variations of reported morbidity must be used with caution; second, to urge the collection, in future surveys, of similar data.

The tables and graphs here shown are not presented as individually significant in a quantitative sense; still less are they presented as representative of cities in general. On the contrary it is likely that the picture will vary from place to place, depending upon the varying practice of local health departments.

ACKNOWLEDGMENTS

The writers are indebted to Associate Statistican Selwyn D. Collins for helpful suggestions; to Dr. E. S. Godfrey, jr., director, Division of Communicable Diseases, New York State Department of Health, for permission to refer to unpublished data; to Dr. Lowell J. Reed, School of Hygiene and Public Health, for counsel and criticism; and to Miss Mary H. Louden, of the Office of Statistical Investigations, for supervision over certain tabulations and calculations.

Appreciation is also expressed to the individuals referred to in Study No. II, who were responsible for the original observations and tabulations.

REFERENCES

(1) Brownlee, John, Jr.: Public Health Administration in Measles. Brit. Med. Jour. April 17, 1920, p. 534.
(2) Godfrey, E. S.: Administrative Control of Measles. Amer. Jour. Pub. Health, vol. 16, p. 571 (June, 1926).
(3) Ruhland, Geo. S.: What Can We Do About Measles? Amer. Jour. Pub. Health, vol. 10, p. 131 (February, 1918).
(4) Sydenstricker, Edgar: The Reporting of Notifiable Diseases in a Typical Small City. Hagerstown Morbidity Studies, No. II. Pub. Health Rep., vol. 41, No. 41 (October 8, 1926), pp. 2186-2191. Reprint No. 1116.
(5) Sydenstricker, Edgar: A Study of Illness in a General Population Group. Method of Study and General Results. Hagerstown Morbidity Study No. I. Pub. Health Rep., vol. 41, No. 39 (September 24, 1926), pp. 2069-2088, Reprint No. 1113.

SOME BIOCAIEMICAL RELATIONSHIPS IN A POLLUTED STREAM

By H. Heuxelexian, Research Bacteriologist, New Jersey Agricultural Experiment Station, Depattment of Serwage Disposal, New Brunswick, N. J.

Since the purification processes in a polluted stream are mainly biological phenomena, there should exist a relationship between the causative organisms and their various chemical products.

A survey, extending over a period of a year, has been made of the extent and intensity of pollution in the Raritan River, N. J. This paper is an attempt to point out some of the general relationships between the microorganisms and their chemical products as revealed in these studies. A detailed report of the results will be published later.

The whole Raritan drainage area is 1,105 square miles. In the upper reaches the river passes through a hilly country which is sparsely populated. In the lower reaches it runs through marshy lands into the Raritan Bay. It is between these sections that the maximum density of the contributing population exists. The tide affects the river up to a point about 2 miles above the city of New Brunswick.

The lower Raritan River receives the raw sewage from a total population of about 100,000 . The effluent from the Plainfield, North Plainfield, and Dunellen disposal plant is also discharged into the river. In addition, the wastes from various industrial plants are discharged, mostly without treatment. The pollution from this source is estimated to be equivalent to the sewage of 80,000 people.

The flow of the river for the year 1927, when the survey was carried on, was 30 per cent higher than the average for the preceding five years.

METHODS

There were established seven regular sampling stations along the river. The tributaries are left out in the present discussion.

Station ${ }^{1}$	\therefore	Distance	Total con tributing population ${ }^{2}$
1. Bouth Branch.		Miles_{0}	
3. Below the towns of Raritan and Somervile		10	12,000
6. Below Bound Brook ----		28	20,500
7. Raritan Landing Bridge (below a dam)		30	20,500
8. Below New Brunswick.		32	64,700
10. Perth Amboy.-----		40	117,600

Samples were taken twice a month for a year with the exception of September, when weekly samples were taken.

The analyses consisted of pH values, alkalinity, chlorides, ammonia, nitrites, nitrates, suspended solids, ash, dissolved oxygen, 5 -day biochemical oxygen demand, total bacteria, B. coli, and the plankton. Bacterial counts were made on nutrient broth agar incubated at $20^{\circ} \mathrm{C}$.

RESULTS

B. coli and total bacteria.-The summer and winter averages for B. coli and total bacteria are given in Figures 1 and 2. The total numbers of bacteria and B. coli increase at first gradually, then very rapidly as the river flows downstream and the pollution increases. The increase in numbers is most pronounced between Bound Brook and New Brunswick. The maximum bacterial density becomes apparent at a point just below New Brunswick. In addition to the pollution due to New Brunswick, the cumulative effect of all the pollution entering the river before this point has to be reckoned with. It has been pointed out, in the studies conducted by the United States Public Health Service (1) (3) on the Ohio and Illinois Rivers, that the B. coli tend to increase to a maximum at a point 10 to 30 hours below the sewer outlets.

There is a close parallelism between the total bacteria and B. coli. The average numbers of both the total bacteria and B. coli are higher in summer than in winter. At station 10, plate counts were higher in winter than in summer. Similar relationships have been observed in the surveys of the Illinois and Ohio Rivers conducted by the United States Public Health Service.

There are three major factors in the bacterial purification of the Raritan River:
(1) Self-purification.
(2) Dilution with sea water.
(3) The effect of salt water itself on the bacteria.

To evaluate the importance of each of these factors is difficult, because all of them become more or less effective at about the same point. The zone of maximum pollution and the zone of maximum dilution are not very far apart. However, certain indirect evidences can be advanced to show the importance of each factor.

High temperatures prevailing in the summer months accelerated the rate of multiplication of the organisms and the rate of decomposition of the polluting organic material. In spite of the greater demand of oxygen thus created, actually less oxygen was available on account of the low solubility at high temperatures. Partially anaerobic conditions might have resulted, since the dissolved oxygen at New Brunswick during the warm months of summer was as low
as 30 per cont of saturation, with an average for the entire year of 60 per cent.

In short stretches of a river when large quantities of decomposable organic matter are present and with temperatures favorable for maxi-

Figure 1.-Comparison of summer averages of B. coli and the agar plate counts in hundreds per c.c.
mum decomposition, oxygen may not be replenished by diffusion fast enough in spite of a maximum amount of aeration. In addition, around coarse suspended particles or near sludge banks there may be created a partially anaerobic condition while oxygen is present in the surrounding medium.

It has been shown that B. coli in feces (5) and fresh solids (2) increase in the first few days of decomposition before they finally are reduced in numbers. The studies of the United States Public Health Service (1) (3) have shown that B. coli increase at first below the point of maximum pollution before they are finally reduced. The higher the temperature, the nearer to the source would be the maximum zone of pollution; self-purification would be accomplished in summer at a point farther upstream than in winter. Actually in summer a higher degree of pollution is indicated at a point higher upstream than

Figcre 2.-Comparison of winter averages of B. coli and the agar plate counts in hundreds per c. c.
in winter. In the winter, on the other hand, the maximum zone of pollution would probably have extended farther downstream than it actually did, but for the counterbalancing effect of dilution.

A further evidence of self-purification is brought out by the effect of aeration afforded by the so-called Five Mile Dam, about 3 miles below Bound Brook. At the sampling point 2 miles below the dam, at the Raritan Landing Bridge, the regular increase in numbers of B. coli is temporarily arrested in the summer months. No such effect is noticed during the winter months. The depth of the water at this point is only 2 to 3 feet and the dam is 6 feet above the floor of the river. The water falls over the dam in a thin sheet, except after a
heavy rainfall. It is believed that the effect is mainly due to reaeration afforded by the dam and not to any retardation of the flow. The biochemical oxygen demand was not reduced, but the nitrates increased. (Figs. 5 and 6.) Presumably oxidation was not sufficient to bring about a reduction in the biochemical oxygen demand, but caused an increase of nitrates from the oxidation of ammonia and a reduction of B. coli.

The yearly averages of the chloride content of the waters from the last four sampling stations are given below:

The chloride content at Sayreville and Perth Amboy can be taken as an index of the extent of dilution by sea water. Taking the total salt concentration of sea water to be $35,000 \mathrm{p}$. p. m., of which 88 per cent is chlorides, there would be 7.5 per cent of sea water present at Sayreville and 22.5 per cent at Perth Amboy. The numbers of B. coli at Sayreville and Perth Amboy were 18.6 and 3.8 per cent, respectively, of those present at New Brunswick. Thus the zone of maximum reduction of numbers comes at the zone of maximum dilution with sea water. It is unlikely that the actual effect of salts plays a major part in the bacteria reduction, since sodium chloride begins to exert a toxic action on B. coli between one and two molar concentra. tions, according to Hotchkiss (4). The average and maximum sodium chloride concentrations encountered at the last two sampling stations are only a fraction of this toxic limit.

Bathing is a common practice in summer at many points along the river, with an average B. coli density of 2,500 per cubic centimeter or more. Winslow and Moxan (7) consider New Haven Harbor as a potential source of danger with a B. coli density of about 20 per cubic centimeter. As indicated above there is a wide gap between existing conditions and the establishment and acceptance of standards for bathing beaches, such as 1 B . coli per cubic centimeter. Either bathing in a large number of streams and watercourses must be prohibited or more lenient standards set, provided the latter are in accordance with scientific findings.

Relation between bacteria and plankton.-In Figure 3 is presented the relation between B. coli and the plankton indicative of pollution. The blue-green algæ, the green flagellates, and the nongreen flagellates were considered as the most important forms. If these forms be taken
as an index of pollution, the river would be considered polluted farther upstream than it would if the numbers of B. coli are used as an index. It is probable that the saprophytic forms of these organisms attack the soluble polluting material somewhat sooner than they do B. coil. After the peak at Bound Brook the pollutional forms of plankton decreased more rapidly than the bacteria, probably also due to the effect of the dam. At New Brunswick the numbers reached a second

Figure 3.-Comparison of pollutional types of plankton and B. coli (yearly averages)
maximum, after which they were reduced greatly in a manner similar to the bacteria.

In Figure 4 is presented a comparison of the yearly averages of the pollutional and nonpollutional forms of the plankton at the different points of the river. As nonpollutional forms are included the diatoms and the green alga-the two forms most commonly encountered. The nonpollutional forms increase in the same way as the pollutional forms as long as the pollution is not excessive (up to Somerville and Raritan). At Bound Brook, however, the numbers are greatly reduced. There is no material increase on account of the dam, but at New Brunswick a sudden rise occurs. After a slight decrease at Sayreville their numbers are further increased at Perth Amboy.

The diatoms and green alge encountered at the last two or three stations belonged to different genera than those above the salt-water mark. The increase in numbers of the nonpollutional forms below New Brunswick where maximum pollution is evident, is to be attributed to the salt-water types.

As Purdy has shown (6) the study of the plankton is a good index of pollution and self-purification. The blue-green alga and the green and nongreen flagellates take a course similar to that of the B. coli in

Figure. 4.-Comparison of pollutional and nonpollutional types of plankton (yearly averages)
the river. The diatoms and green algæ, with the exception of the salt-water forms, are least abundant at the zone of maximum pollution.

Bacteria, biochemical oxygen demand, and ammonia nitrogen.-It was considered of interest to compare the total numbers of bacteria, the biochemical oxygen demand, and the ammonia nitrogen. It was expected that there would be a relationship between the bacteria, their food, and certain end products of decomposition. Barring the effect of industrial wastes, the biochemical oxygen demand is a good index of the amount of easily decomposable organic material, while the
ammonia nitrogen, being the end product of the decomposition of nitrogenous materials, should give a fair measure of the rate of decomposition. Thus, in general, the greater the food supply, i. e., the pollution, the greater should be the bacterial numbers and the ammonia nitrogen in the river. The relations are shown in Figure 5.

Figure 5.-Comparison of biochemical oxygen demand, agar plate counts in hundreds per c. c., and ammonia nitrogen (yearly averages)

Any one of these three tests gives an accurate picture of the extent of pollution. Of the three, the B. coli and the biochemical oxygen demand are to be preferred-the first because of its sensitivity, and the second because it represents in a fair and accurate way the total amount of oxygen required to stabilize the polluting material. The amount of ammonia nitrogen present at any moment is the resultant of several factors, such as (1) the rate of its production from the organic
material (2) the nature of the organic material itself, (3) the rate at which it is assimilated by the bacteria, (4) the rate at which it is converted into nitrates, and (5) the rate at which it is reduced from nitrates. From the diversity of reactions that cause the production

FIGURE 6.-Comparison of ammonia and nitrate and nitrite nitrogens (yearly averages)
and consumption of ammonia it would become apparent that it can not always be taken as a safe index of pollution.

Ammonia, nitrate and nitrite nitrogen, and the dissolved oxygen.To compare the changes in the different forms of nitrogen, the yearly averages of ammonia, nitrate and nitrite nitrogen are presented in Figure 6. The nitrates were moderately high (about 1 p. p. m.) in the three upper sampling stations. Pollution in this section was only
moderate, and nitrification was not affected. Between Bound Brook and the station below the dam at Landing Bridge nitrates showed a striking increase, due to the influence of the dam. This again emphasizes the influence of small dams in increasing nitrification in a stream. In spite of the decided increases in nitrates, the amount of ammonia nitrogen was not reduced, but on the contrary increased simultaneously, indicating that its production was proceeding unabated. At New Brunswick a decided loss of nitrates occurred. The loss was probably due to the arresting of nitrification on account of excessive pollution and also to a certain degree due to denitrification. Nitrates increased again at Sayreville, probably due to the

Figure 7.-Comparison of nitrite and nitrate nitrogen and dissolved oxygen (per cent saturation) (yearly averages)
relative reduction of pollution. At Perth Amboy, where sea water was mixed in greater proportions, the nitrates decreased sharply.

As was to be expected, the increase in nitrites took place at a point farther upstream than did that in nitrates. There was a decrease in nitrites between Bound Brook and the Landing Bridge station. At this latter point nitrites were converted into nitrates faster than they were formed from ammonia. Nitrites did not suffer a loss below New Brunswick similar to that shown by the nitrates.

The relation between nitrite and nitrate nitrogen and dissolved oxygen is presented in Figure 7. The nitrites and nitrates were added together as a potential source of oxygen and compared with the actual amounts of dissolved oxygen. The nitrites and nitrates increased as long as the oxygen saturation was 80 per cent or more. It would appear that pollution up to this point was not sufficient to have a detrimental effect on nitrification. When the average oxygen saturation dropped to 60 per cent there was loss of nitrates. Prob-
ably not only nitrification was retarded but an actual loes of nitrates, due to reduction, might have taken place. Although it has been shown that the nitrates are not utilized until practically all the dissolved oxygen is consumed, it is possible, as indicated in the discussion above, that localized anaerobic zones around organic particles might be established in a medium which is not completely deficient of oxygen.

In the relationship pointed out above the underlying assumption has been that the increases in ammonia, nitrites, and nitrates are the result of pollution and bacterial activities caused by domestic sewage and are not materially affected by industrial wastes discharging ammonia, nitrites, and nitrates. Wastes of such character could not be traced to any factories during the survey. Moreover, assuming an average monthly discharge of the river of 1,000 second-feet, not less than 2,700 pounds of nitrates per day should be thrown into the river in order to cause an increase of 0.5 p . p. m. nitrate content.

SUMMARY AND CONCLUSIONS

From a study of the data obtained in a survey of the Raritan River extending over a year the following general conclusions may be drawn:

1. The river is polluted. The pollution reaches a maximum just below New Brunswick.
2. Very few points along the river could be safely used for bathing.
3. The process of self-purification is evidenced by the following:
(a) The reduction of the numbers of B. coli and pollutional forms of plankton by a dam.
(b) The lowering of oxygen saturation (due to bacterial activities).
(c) The zone of maximum pollution moves farther upstream in summer.
4. Dilution with sea water is a major factor in the improvement of the river below New Brunswick. The zone of maximum dilution and the zone of bacterial reduction coincide.
5. The maximum amount of chlorides present is below the toxic limit for B. coli, and therefore probably is not a factor in the bacterial reduction at the point of maximum dilution.
6. The average numbers of total bacteria and B. coli parallel each other closely. The numbers of both were higher in summer than in winter.
7. The pollutional forms of the plankton increased at a point farther upstream than did the B. coli or the total numbers of bacteris.
8. The numbers of nonpollutional forms of plankton are not affected by moderate amounts of pollution. With higher pollution,
their numbers are reduced. Farther downstream salt-water types replace the fresh-water forms found upstream.
9. There is a direct relationship between the numbers of bacteria, biochemical oxygen demand, and the ammonia nitrogen.
10. As long as the river is not overloaded nitrification is not impaired. But a heavy pollution, causing a large depletion of oxygen, causes a decrease in the nitrates.
11. Of the tests employed in the survey the following gave an accurate picture of pollution with domestic sewage:
(1) Bacteria-B. coli and total numbers.
(2) Biochemical oxygen demand.
(3) Ammonia nitrogen.
(4) Nitrate and nitrite nitrogen.

ACKNOWLEDGMENT

The chemical and zoological data were put at the author's disposal by the courtesy of Dr. W. Rudolfs.

REFERENCES

(1) Frost, W. H., and Streeter, H. W.: A Study of the Pollution and Natural Purification of the Ohio River. II. Report on Surveys and Laboratory Studies. Pub. Health Bul. No. 143, Section VI.
(2) Heukelekian, H. (1927): The Fate of B. coli and B. Aerogenes in Sewage Purification. Jour. Bact., vol. 14, pp. 55-67.
(3) Hoskins, J. K., Ruchhoft, C. C., and William, L. G.: A Study of the Pollution and Natural Purification of the Illinois River. I. Surveys and Laboratory Studies. Pub. Health Bul. No. 171.
(4) Hotchkiss, M. (1923) : Studies on Salt Action. The Stimulating and Inhibitive Effect of Certain Cations upon Bacterial Growth. Jour. Bact., vol..8, pp. 141-162.
(5) Jordan, E. O. (1926): The Changes in the Bacterial Content of Stored Normal and Typhoid Feces. J. Infect. Dis., vol. 38, pp. 306-322.
(6) Purdy, W. C.: A Study of the Pollution and Natural Purification of the Ohio River. I. The Plankton and Related Organisms. Pub. Health Bul. No. 131.
(7) Winslow, C.-E. A., and Moxan, D. (1928): Bacterial Pollution of BathingBeach Water in New Haven Harbor. Amer. Jour. Hyg., vol. 8, pp. 299310.

COURT DECISIONS RELATING TO PUBLIC HEALTH

Approval of school sites in third-class school districts by county health officer.-(Montana Supreme Court; State ex rel. Wildin v. Eickoff et al., 276 P. 954; decided April 25, 1929.) Section 1173, Revised Codes 1921, relating to third-class school districts, provided in part as follows:

[^3]whenever petitioned so to do by one-third of the voters of such district, the district board shall without delay call a meeting at some convenient time and place fixed by the board to vote upon such question of selection * * * of schoolhouse site. Such election shall be conducted and votes canvassed in the same manner as at the annual election of school officers. * * * If a majority of the electors of the district voting at such meeting or election shall be in favor of selecting * * * the schoolhouse site, the board shall carry out the will of the voters thus expressed: Provided, That all sites so chosen must be approved by the county superintendent of schools and the county health officer; * * *.

In construing the requirement in this section concerning the approval of the site by the county superintendent of schools and the county health officer, the supreme court held that the approval was to be after the voters had determined upon a site. The court's interpretation is shown by the following extract from the opinion:

While it is true that the site for a schoolhouse "must be approved by the county superintendent of schools and the county health officer," yet it is plain that they have nothing whatsoever to do with the selection of a suitable site in the first instance. Upon the voters of the district the statute confers the exclusive power of "selecting, purchasing, exchanging, or selling the schoolhouse site." And such determination must be made at a meeting of the voters of the district held pursuant to required notice, at a convenient time and place, whereat an election shall be "conducted and the votes canvassed in the same manner as at the annual election of school officers." * * * School sites "so chosen must be approved by the county superintendent of schools and the county health officer"; that is, after the voters have determined upon a site for a schoolhouse, before a school building is moved thereto or a new one constructed, the site must have the approval of the two officers named. The language employed will admit of no other construction. It is the site "so chosen" which must be approved. This has reference to an accomplished event, indicative of intention that these officials are given no voice in the selection of the site in the first instance. It is not contemplated that these officials shall act until the qualified voters at an election have chosen a site, after which fact the site "so chosen" must be approved by them.

However, in the interest of economy and the proper administration of the law, it would seem advisable to obtain the approval of these officers of the proposed site or sites in advance of the election. Otherwise, the voters might select a site which could not be utilized because of the refusal of the county superintendent and health officer to approve the same. In such event much unnecessary delay and needless expense would be entailed.

Sexual sterilization act held constitutional.-(Utah Supreme Court; Davis, Warden, v. Walton, 276 P. 921; decided April 9, 1929.) An inmate of the Utah State prison was ordered asexualized by the State board of corrections acting under the State sterilization law (Laws 1925, ch. 82). The validity of this statute was questioned by the inmate on the grounds that (1) it violated the provision of the State constitution prohibiting cruel and unusual punishments
and (2) it violated the fourteenth amendment to the Federal Constitution in that it denied him equal protection of the law. Both of these contentions were overruled by the supreme court, which stated its findings concerning the validity of the law as follows:

* * * The act is in no sense a penal statute. The operation provided for is not a punishment for a crime. Its purposes are eugenic and therapeutic. Therefore cases dealing with laws that provide for asexualization as a punishment for crime are not applicable to the law here under consideration. * * * It is urged that the act is class legislation; that to require the asexualization of those confined in public institutions without requiring similar treatment of persons of the same class who are not so confined offends against the equal protection of the law guaranteed by the fourteenth amendment of the Constitution of the United States. By the act here under review it will be observed that it is made a felony for any person to perform, encourage, assist in, or otherwise promote, the performance of any operation for the purpose of destroying the power to procreate the human species, except as in the act authorized, unless the same is a medical necessity. It is in effect urged that, to require the asexualization of a specified class of persons who are inmates of a public institution, and hence may be segregated and prevented from procreation, and at the same time make it a felony to asexualize persons of the same class who are at liberty to procreate is an unreasonable and unwarranted exercise of the police power. A similar attack was made upon the law of Virginia without avail in the case of Buck v. Bell, supra. * * * It is, of course, elementary that the Supreme Court of the United States is the arbiter to determine whether or not a law offends against the Constitution of the United States. We are of the opinion that the rule announced by that court in the case of Buck v. Bell, supra, is a complete answer to the claim here made by the appellant that the law under which this proceeding is had offends against the fourteenth amendment of the Constitution of the United States.
* * * The procedure provided for in the law under review is well calculated to prevent abuse. The inmate upon whom it is proposed to perform the operation is given ample opportunity to be heard before the operation may be performed. The appellant must fail in his claim that Laws Utah, 1925, ch. 82, is unconstitutional.

DEATHS DURING WEEK ENDED JUNE 15, 1929

Summary of information received by telegraph from industrial insurance companies for the week ended June 15, 1929, and corresponding week of 1928. (From the Weekly Health Index, June 19, 1929, issued by the Bureau of the Census, Department of Commerce)

Deparment of Commerce)	Week ended June 15, 1929	$\underset{\text { Feek, }}{\substack{\text { Corresponding } \\ 1923}}$
Policies in force	68, 313, 021	71, 375, 215
Number of death claims.	12, 740	13, 457
Death claims per 1,000 policies in force, annual rate.-	9. 7	9. 9

Deaths from all causes in certain large cities of the United States during the week ended June 15, 1989, infant mortality, annual death rate, and comparison with corresponding week of 1988. (From the Weekly Health Index, June 19, 1989, issued by the Bureau of the Census, Department of Commerce)

${ }^{1}$ Annual rate per 1,000 population.
${ }^{2}$ Deaths under 1 year per 1,000 births. Cities left blank are not in the registration area for births.
${ }^{3}$ Data for 69 cities.
4 Deaths for week ended Friday.
${ }^{6}$ In the cities for which deaths are shown by color, the colored population in 1920 constituted the following percentages of the total population: Atlanta, 31; Baltimore, 15; Birmingham, 39; Dallas, 15; Fort Worth, 14; Houston, 25; Indianapolis, 11; Kansas City, Kans., 14; Knorville, 15; Louisville, 17; Memphis 38; Nashville, 30; New Orleans, 26; Richmond, 32; and Washington, D. C., 25.

Deaths from all causes in certain large cities of the United States during the week ended June 15, 1989, infant mortality, annual death rate, and comparison with corresponding week of 1928-Continued

City	Week ended June 15, 1929		$\begin{gathered} \text { Annual } \\ \text { death } \\ \text { rate per } \\ 1,000, \\ \text { corre- } \\ \text { sponding } \\ \text { week, } \\ 1928 \end{gathered}$	$\begin{gathered} \text { Deaths under } 1 \end{gathered}$		$\begin{gathered} \text { Infant } \\ \text { mortality } \\ \text { rate, week } \\ \text { ended } \\ \text { June 15, } \\ 1.929 \end{gathered}$
	Total deaths	Death rate		$\begin{gathered} \text { Week } \\ \text { ended } \\ \text { June 15, } \\ 1929 \end{gathered}$	Corre- sponding week, 1928	
Milwaukee.	132	12.7	10.6		18	26
Minneapolis.	86	9.9	8.0	3	8	19
Nashville-...	55	20.6	22.5	4	9	65
White-	37			3	9	${ }^{65}$
Colored	18	(3)	()	1	0	63
New Bedford. New Haven.	25 29	8.1	10.6	0	5 5	${ }_{61}^{0}$
New Orleans.	157	19.1	14.9	16	10	79
White-...	90			7	1	49
Colored.	67	(5)	(5)	9	9	151
New York	1,400	12.2	12.3	111	144	45
Bronx Borough.	173	9.5	10. 1	9	9	27
Brooklyn Borough	448	10.1	10. 5	31	54	31
Manhattan Borough	603	18.0	18.3	¢0	69	73
Queens Borough.	138	8.4	7.3	10	11	41
Richmond Borough.	38	13.2	13.5	1	1	18
Newark, N. J	113	12.5	12.0	7	8	37
Oakland.-.--	65	12.4	9.9	4	2	44
Oklahoma City	43			4 5	3 5	80 58
Omaha...	50 32	11.7	12.0	5	5 3	58
Praterson----	$\begin{array}{r}32 \\ 441 \\ \hline\end{array}$	11.5	14.4	$\begin{array}{r}0 \\ 34 \\ \hline\end{array}$	3 48 48	-
Pittsburgh	148	11.5	12.9	15	16	52
Portland, Oreg.	65			2	4	23
Providence.....	55	10.0	14.2	7	11	62
Richmond.	49	13.2	14.3	5	9	70
White.	14			2	3	42
Colored	35			3	6	123
Rochester.	80	12.7	11.9	6	6	51
St. Louis...	226	13.9	11.8	14	8	47
St. Paul-------	54			4	4	10
Salt Lake City ${ }^{\text {- }}$	33	12.5	14.0	4	4	62
San Antonio.	84	20.1	15.6	13	15	
San Diego---	44	19.2	21.8	1	4	19
San Francisco.	154	13.8	13.9	7	7	45
Schenectady -	16	9.0	7.8	2	4	64 36
Somerville-	13	$\begin{array}{r}6.6 \\ \hline 13\end{array}$	$\begin{array}{r}8.7 \\ 8 \\ \hline\end{array}$	$\stackrel{1}{5}$	2	83
Springfield, Mass	38	13.3 13.6	$\begin{array}{r}8.7 \\ 13 \\ \hline\end{array}$	5 2	1	83 24
Syracuse.........	52	13.6	$\begin{array}{r}13.9 \\ 8 \\ \hline\end{array}$	2	6	24 37
Toledo...-	59	9.8	$\begin{array}{r}8.3 \\ 14 \\ \hline\end{array}$	4 3	4	$\stackrel{37}{54}$
Trenton.-...	38	14.3 10.4	14.7 11.0	3 9	$\stackrel{4}{10}$	$\stackrel{54}{53}$
Washington, D. C.	110	10.4	11.0	9 4 4	10	53 34
WhiteColored	43	(6)	(5)	5	6	${ }_{95}$
Waterbury.-	11			2	3	51
Wilmington, Del.	20	8.1	6.9	0	2	0
Worcester.........	35	9.3	10.8	1	6	13
Yonkers..	22	9.5	9.5	2	3	47
Youngstown..	27	8.1	7.8	3	2	43

[^4]
PREVALENCE OF DISEASE

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring

UNITED STATES

CURRENT WEEKLY STATE REPORTS

These reports are preliminary and the figures are subject to change when later returns are reeeived by the State health officers

Reports for Weeks Ended June 15, 1929, and June 16, 1928

Cases of certain communicable diseases reported by telegraph by State health officers for weeks ended June 15, 1929, and June 16, 1928

| | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

[^5]Cases of certain communicable diseases reported by telegraph by State health officers for weeks ended June 15, 1929, and June 16, 1928-Continued

${ }^{2}$ Week ended Friday.

Figures for 1929 are exclusive of Oklahoma City and Tulsa, and for 1928 are exclusive of Tulsa only.

Cases of certain communicable diseases reported by telegraph by State health officers for weeks ended June 15, 1929, and June 16, 1928-Continued

Division and State	Poliomyelitis		Scarlet fever		Smallpor		Typhoid fever	
Pacific States:	004	014	$\begin{array}{r} 11 \\ 10 \\ 326 \end{array}$	$\begin{array}{r} 32 \\ 6 \\ 128 \end{array}$	421645	112918	737	5412
Washington..								
Oregon-....								
California								

SUMMARY OF MONTHLY REPORTS FROM STATES

The following summary of monthly State reports is published weekly and covers only those States from which reports are received during the current week:

State	$\begin{array}{\|c\|} \hline \text { Me- } \\ \text { ningo- } \\ \text { coccus } \\ \text { menin- } \\ \text { gitis } \end{array}$	Diphtheria	Influenza	$\begin{aligned} & \text { Ma- } \\ & \text { laria } \end{aligned}$	$\underset{\substack{\text { Mea- } \\ \text { sles }}}{\text { Men }}$	Pellagra	Polio-myelitis	Scarlet fever	$\underset{\text { pox }}{\text { Small- }}$	Typhoid fever
May, 1829										
Florida.	1	29	7	104	389	6	6	26	4	16
Louisiana.	13	69	63	63	238	73	0	167	44	57
Maine.-	1	10	20		427	1	0	111	1	12
New Jersey.	34	560	18		1, 277		0	628	0	19
Ohio-...-	64	205	71	3	7, 357	1	3	967	311	38
Vermont		2			48		0	63	26	4

May, 1989	
Anthrax:	Cases
New Jersey...-	1
Chicken pox:	
Florida	68
Louisiana.	34
Maine.	122
New Jersey.	1,291
Ohio...	1,286
Vermont	74
Conjunctivitis:	
Maine..	1
Dysentery:	
Florida.	13
New Jersey.	2
Ohio.-	2
German measles:	
Maire...	203
New Jersey.	141
Ohio.	29
Hookworm disease:	
Louisiana.	5
Lead poisoning:	
New Jersey..	3
Ohio.	10
Lethargic encephalitis:	
Florida.	3
Louisiana	7
Ohio.	8
Mumps:	
Florida.	12
Louisiana.	3
Maine..	155
Ohio.	394
Vermont.	95
Ophthalmia neonatorum:	
New Jersey.....	7
Ohio......................-	98

Paratyphoid fever:
Maine 2
Ohio. 1
Puerperal fever: Ohio 11
Septic sore throat:
Maine 2
Ohio 77
Tetanus:
Louisiana 6
Ohio 4
Trachoma:
New Jersey 1
Ohio 3
Trichinosis: Ohio 8
Tularaemia:
Florida. 1
Louisiana 1
Typhus fever: Florida 3
Undulant fever:
Louisiana 1
Ohio 11
Vincent's angina: Maine 4
Whooping cough:
Florida. 244
Louisiana 18
Maine 93
New Jersey 837
Ohio 1, 698
Vermont 81

Number of Cases of Certain Communicable Diseases Reported for the Month
of April, 1929, by State Health Officers

State	$\left\lvert\, \begin{gathered} \text { Chicken } \\ \text { pox } \end{gathered}\right.$	Diphtheria	Measles	Mumps	Scarlet fever	$\underset{\text { pox }}{\text { Small- }}$	Tuberculosis	Typhoid fever	Whooping cough
Maine	99	22	811	122	123	13	20	14	118
New Hampshir	37	12		152	46 56	31	112	0	143
Massachusetts.	822	360	1,922	447	1,198	7	570	18	710
Rhode Island.	56	49	448	8	91	0	54	1	17
Connecticut.	229	96	2,434	389	258	6	139	3	142
New York.	2,491	1,430	4,872	2,126	2,405	5	1,831	63	1,460
New Jersey	1,065	478	1,389		755	0	491	4	913
Pennsylvania	2,040	629	7,757	1,572	1,689	0	719	67	1,872
Ohio-..	1,126	252	8,393	321	1,175	234	752	38	2, 119
Indiana.	225	50	1,929	33	819	205	159	27	319
Illinois.	1,168	659	8, 025	523	1,857	355	1,168	28	697
Michigan.	765	348	3,671	752	2,200	277	500	28	1,281
Wisconsin.	865	58	5, 030	323	612	22	253	7	989
Minnesota	378	87	3,070		533	13	255	27	653
Iows.-	107	27	201	445	583	180	54	22	111
Missouri.	279	149	1,408	207	395	164	226	54	389
North Dakota	60	28	444	20	154	55	40		51
South Dakota	46	${ }_{58} 20$	145	41	82	179	$1{ }^{4}$	1	${ }_{63} 17$
Nebraska.	86	56 42	390 2,088	$\begin{aligned} & 206 \\ & 640 \end{aligned}$	482	240		9 12	63 300
Kansas...-	386	42	2,088			240			
Maryland	264	96	183	883	230	0	338	20	631
Dist. of Columb	132	36	84		65	0	123	3	129
Virginia.-...-	578	79	877		108	30	${ }^{1} 175$	28	711
West Virginia.	103	41	1,860		${ }^{68}$	54 85	46	39 16	256 1,418
North Carolina	579 422	89 85	179 59	166	120 38	85 22	210	16 30	1,418
Georgia.	100	28	98	93	53	20	78	32	147
Florida.	72	40	241	18	17	-	63	23	235
Kentucky ${ }^{\text {Tennessee }}$	120	26	173	120	161	25	286	30	112
Alabama.	185	49	636	49	61	24	364	33	177
Mississippi	918		2, 524	486	41	5	323	49	1,708
Arkansas.-	104	13	256	167	43	17	${ }^{128}$	27	54
Louisiana.	53	76	308	4	204	23	1189	49	58
Oklahoma ${ }^{\text {- }}$	62	41	229	69	142	351	48	31	120
Texas ${ }^{\text {a }}$ -	108	21	703	30	92	89	${ }^{5} 15$		34
Idaho.	32	2	29	76	60	145	12	0	
W yoming	56	5	114	116	${ }^{67}$	44		1	82
Colorado.	581	34	121	249	194	74	34	6	82
Arizona	39	13	10	4	37	53	50	2	11
Utah ${ }^{3}$									
Nevada ${ }^{6}$ -									
Washington	527	33 24	760 965	127	179	132	198	28	$\begin{array}{r}37 \\ \hline 7\end{array}$
California	2,908	203	333	2,198	1,947	321	922	23	1,217

[^6][^7]Case Rates per 1,000 Population (Annual Basis) for the Month of April, 1929

State	Chickenpox	Diph theria	$\begin{gathered} \text { Meas- } \\ \text { les } \end{gathered}$	Mumps	scarlet fever	$\underset{\text { Smax }}{\text { Sox }}$	Tuber-culosis	Ty. phoid fever	Whooping cough
Maine	1.51	0.34	12.38	1.88	1.88	0.20	0.31	0.21	1.80
New Hampshire ${ }^{\text {1--. }}$. 31			1.22				
Vermont....-.-.-.--	1.28	31	1.86	5. 25	1.93	1.07	${ }^{1} .41$. 00	4.94
Massachusetts	2.31	1.01	5.39	1. 25	3.36	. 02	1.60	. 05	1.99
Rhode Island.	.94	82	7.49	. 13	1.52	. 00	. 90	. 02	. 28
Connecticut	1.64	. 69	17.44	2.79	1.85	. 04	1.00	. 02	1.02
New York.	260	1.49	5.08	2.22	2.51	. 01	1.91	. 07	1. 52
New Jersey.	3. 33	1.49	4.34		236	. 00	1. 53	. 01	2.85
Pennsylvania	2.49	. 77	9. 46	1. 92	2.08	. 00	. 88	. 08	2.28
Ohio....	1.97	. 44	14.71	. 56	2.08	. 41	1.32	. 07	3.71
Indiana	. 86	. 19	7.33	. 13	3.11	. 78	. 60	. 10	1.21
Illinois.	1,90	1.07	13.02	. 86	3.01	. 58	1.90	. 05	1. 13
Michigan.	1. 88	. 80	9.52	1. 95	5. 70	. 72	1.30	. 07	3.27
Wisconsin	3.52	. 24	20.48	1.32	249	. 09	1.03	. 03	4.03
Minnesota	1.67	. 38	13.54		235	. 06	1.12	. 12	2.88
Iowa	. 54	. 14	1.01	2.23	2.92	. 90	. 27	. 11	. 56
Missouri	. 96	. 51	4.84	. 71	1.36	. 56	. 78	. 19	1.34
North Dakota	1.14	. 53	8.42	. 38	292	1.04	. 76	. 06	. 97
South Dakota	. 79	. 34	248	. 70	1.40	3.06	. 07	. 02	. 29
Nebraska	. 74	. 48	3.34	1.77	4. 13	. 00	1.11	. 08	. 54
Kansas.-	2.55	. 28	13.79	4.23	3.88	1.59	1.44	. 08	1.88
Delaware Maryland	1.96	. 71	1.36	6.57	1.71	. 00	252	. 15	
District of Columbia	2.85	. 78	1.81		1.40	.00	2.65	06	2.78
Virginia	2.70	. 37	4.10		. 50	. 14	${ }^{1.82}$. 13	3.32
West Virginia	. 72	. 28	12.92		. 47	. 37	. 32	. 27	1.78
North Carolina.	236	. 36	. 73		. 49	. 35		. 07	6. 79
South Carolina	2.73	. 55	. 38	1.07	. 25	. 14	1.36	. 19	6.05
Georgia	. 38	. 10	. 37	. 35	. 20	. 08	. 29	. 12	55
Florida.	. 60	. 33	2.01	. 15	. 14	. 05	. 53	. 19	1.96
Kentucky	58	13	84	. 58	78	12	1.38	14	54
Alahama.	. 87	. 23	288	. 23	.29	. 11	1.71	. 15	. 83
Mississippi	6. 24		17.15	3.30	. 28	. 03	219	. 33	11. 69
Arkansas..	. 64	. 08	1. 59	1.03	. 27	. 11	${ }^{1} 17$	17	. 33
Louisiana	. 33	. 47	1.89	. 02	1.26	. 14	11.17	. 30	. 36
Oklahoma ${ }^{\text {- }}$. 35	. 23	1.28	. 39	. 80	1.97	. 27	. 17	. 67
Texas ${ }^{2}$ -	239			66	2	07	8, 33	11	75
Idaho.	2.70	.04	15.38	1.66	1.31	3.16	1.04	.00	. 11
W yoming	2.69	. 24	5.48	5. 58	3.22	2.12		. 05	. 43
Colorado.	6.39	. 37	1.33	2.74	213	. 81	. 37	. 07	. 90
New Mexico ${ }^{\text {a }}$. 97	. 32	. 25	. 10	. 92	1.32	1.24	. 05	27
Utah ${ }^{2}$									
Nevada ${ }^{\text {- }}$									
Washington	3.98	. 25	5.74	2.22	1.35	1.65	1.49	. 21	4.05
Oregon.	2.78	. 32	12.85	1. 69	1.52	1.76	. 71	. 05	. 49
California....	7.56	. 53	. 87	5.71	5.06	. 83	240	. 06	3.16

1 Pulmonary.
${ }^{2}$ Report not received at time of going to press.
3 Reports received weekly.

Exclusive of Oklahoma City and Tulsa.
${ }^{6}$ Includes 11 cases from sanitoria.

- Reports received annually.

RECIPROCAL NOTIFICATIONS

Notifications regarding communicable diseases sent during the month of May, 1929, by departments of health of certain States to other State health departments

Disease	California	Illinois	Kansas	$\underset{\text { Sota }}{\text { Minne- }}$	New Jersey	New York
Actinomycosis.				1		
Cerebrospinal meningitis				1		
Diphtheria-...---.				2		
Dysentery (amebic)				2		
Monorrhea......						
Scarlet fever...						
Smallpox...		3				5
Syphilis...			12	5		
Trachoma-	1			41		
Typhoid fever	1	1			1	2
Whooping cough.						

PATIENTS IN INSTITUTIONS FOR THE PEEBLE-MINDED, JULY TO SEPTEMBER, 1928

Reports for the third quarter of the year 1928 have been received by the Public Health Service from 24 institutions for the care of the feeble-minded, located in 21 States, including one institution for females only with more than 1,200 patients. The total number of patients in these institutions on September 30, 1928, including those on temporary leave or otherwise absent but still on the books, was 30,866.

The first admissions were as follows:

	Male	Female	Total
July.	166	121	237
August	168	124	292
September	178	152	330
Total	512	397	909

Of the first admissions during the three months, 56.3 per cent were males and 43.7 per cent were females, the fatio being 129 males per 100 females.

On September 30, 1928, there were 15,551 male patients and 15,315 female patients, giving a ratio of 102 males per 100 females.

During the three months 242 patients were discharged, 127 males and 115 females. One hundred and nineteen male patients and 74 female patients died.

The annual death rates, based on the estimated population of the institutions the middle of August were: 30.8 males per 1,000; females, 19.4 per 1,000 ; persons, 25.1 per 1,000 .

Data showing the number of patients on temporary leave are available for 24 instututions for the third quarter of the year 1928. During the second quarter of the year 1928, there was a marked increase in the percentage of the patients who were on temporary leave. The "peak" appeared to be reached about the end of July, but there was very little difference in the number on parole at the beginning and end of the third quarter.

The following table shows the numbers of patients in the institutions and on temporary leave on July 1 and at the end of each month of the third quarter of 1928, and the percentage of the total patients who were on leave.

	July 1, 1928	$\begin{aligned} & \text { July 31, } \\ & \text { 1928, } \end{aligned}$	$\begin{aligned} & \text { Aug. } 31, \\ & 1928 \end{aligned}$	$\begin{gathered} \text { Sept. 30, } \\ 1928 \end{gathered}$
Patients in institutions:				
Male	12,940	12,766	12,946	13,206
Female	13,207	13, 090	13,245	13,440
Total	28, 147	25, 856	28, 191	28,646
Patients on temporary leave:				
Male	$\begin{aligned} & 2,287 \\ & 1,857 \end{aligned}$	2,564 2,033	$\begin{aligned} & 2,497 \\ & 1,952 \end{aligned}$	2,345 1,875
Total	4,144	4,597	4,449	4,220
Total patients on books:				
Male	15, 227	15,330	15, 443	15, 651
Female	15, 064	15, 123	15, 197	15,315
Total	30, 291	30,453	30,640	30, 866
Per cent of total patients on temporary leave: Male.	15.0	16.7	16.2	
Female.	12.3	13.4	12.8	12.2
Total.	13.7	15.1	14.5	13.7

GENERAL CURRENT SUMMARY AND WEEKLY REPORTS FROM CITIES

The 98 cities reporting cases used in the following table are situated in all parts of the country and have an estimated aggregate population of more than $31,565,000$. The estimated population of the 91 cities reporting deaths is more than $29,995,000$. The estimated expectancy is based on the experience of the last nine years, excluding epidemics.

Weeks ended June 8, 1929, and June 9, 1928

	1929	1928	Estimated expectancy		1929	1828	Estimated expectancy
Cases reported				Cases reported-Contd.			
Diphtheria:				Smallpox:			
${ }^{46}$ cities.	1,151	1,398	779	${ }_{98} 98$ states.	988 50	73 .65	72
Measles:				Typhoid fever:			
45 States...---.-------	12,467 4,462	14,763	-.....-	46 States.	431	820	59
Meningococcus menin-	4,402	6,091	-.....--				8
gitis: ${ }_{46}$ States				Deaths reported			
46 States	229	119		Influenza and pneu-			
Poliomyelitis:	29	31		monia: 91 cities			
Scarlet fever:		31		Smallpox:	562	834
46 States.	3,287	2,903		91 cities....-.......---	0	0	
98 cities..	1,268	1,148	946				

City reports for week ended June 8, 1989

The "estimated expectancy" given for diphtheria, poliomyelitis, scarlet fever, smanpos, and typhoid fever is the result of an attempt to secortain from previous occurrence the number of cases of the disease under consideration that may be expected to escur daring a cartain week in the absence of epidemics. It is besed on reports to the Public Health Service during the past nine years. It is in most instances the median number of cases reported in the corresponding weeks of the preceding years. When the reports include several epidemios, or when for other reasons the median is unsatisfactory, the epidemic periods are excluded and the estimated expectancy is the mean number of cases reported for the week during nonepidemic years.
If the reports have not been received for the full nine years, data are used for as many years as possible, but no year earlier than 1920 is included. In obtaining the estimated expectancy, the figures are smoothed when necessaiy to avoid abrupt deviation from the usual trend. For some of the diseases given in the table the available data were not sufficient to make it practicable to compute the estimated expectancy.

Division, State, and city	PopulationJuly 1,1928,estimated	Chicken pox, cases reported	Diphtheria		Influenza		Measles, cases reported		Pneumenia, dcaths no ported
			Cases, estimated expectancy	Cases roported	Cases re ported	Deaths ported			
neme england									
Maine:									
Portland.	78,600	2	1	0		0	22	1	1
New Hampshire:									
Concord....-	${ }^{(1)} 85,700$	0	0	0		0	32 7	0	0
Nashua.-.-		0	0	0		0	0	0	0
Vermont:	(1)	0	0	0		0	0	0	0
Massachusetts:									
Boston-...	799, 200	57	39	14		0	55	57	17
Fall River	134,300	7	3	0		0	0	0	0
Wpringiteld.	1497,800 197	10	2 3	1		0	48	2	1
Rhode Island:									
Prowtucket--.--	73, 100	3	0	2		0	${ }_{6}$	0	4
Providence...	286, 300	1	5	8		1	61	0	4
Connecticut: Bridgeport.		1	5	2		0	11	1	2
Hartiord.-	172, 300	6	4	2		0	8	7	2
New Haven.	187, 900	20	1	0		0	28	0	0
middee atlantic									
New York:									
Buftalo...-	555, 800	33	11	4		4	72	$3{ }^{2}$	${ }^{21}$
New York	6, 017, 500	288	247	224	12	4	94	308	127
Rochester.-	328, 200	10	9	0		0	11	14	4
Syracuse--- New Jersey:	199, 300	51	5	0		0	4		1
Camden.	135, 400	2	6	5		0	9	1	
Newark-	473,600	75	11	33	4	0	4	70	9
Trenton--	139, 000	0	3	0		0	26	0	
Pennsylvania: Philadelphia.	2, 064, 200	150	58	27			58	24	35
Pittsburgh..-	2,673, 800	78	16	12	3	3	68	13	18
Reading..-	115, 400	14	2	2		0	5	0	0
east nozth central									
Ohio:									
Cincinnati..-	413,700	11	${ }_{6}^{6}$	${ }^{5}$		1	$\begin{array}{r}218 \\ \hline\end{array}$		8
Cleveland.--	1,010,300	150	$\begin{array}{r}23 \\ 3 \\ \hline\end{array}$	23	1	1	418 56	12 0	20
Columbus..-.....--	299, 000	7	3	0	1	${ }_{2}^{2}$	56 65	11	6
	313, 200	28	4	0		0	65	11	6
Fort Wayne	105, 300	11	2	1		0	12	0	2
Indianapolis.......-	382, 100	23	3	1		0	243	5	11
South Bend -........	86, 100	0	1	0		0	5	0	0
Terre Haute.......-	73,500	0	0	0		0	8	2	0
Hlinois: Chicago	3,157,400	112	67	112	8	2	1,090		
Springfield --...-....-	6187, 200	3	1	0		0	, 27	0	,
Michigan:	1,378,900	152	41	44	4		236		
Flint	1, 148,800	44	2	0		0	18	1	4
Grand Rapids....--	164, 200	7	1	1		0	26	1	1

[^8]City reports for week ended June 8, 1929-Continued

Division, State, and city	$\begin{gathered} \text { Population } \\ \text { July 1, } \\ \text { 1928, } \\ \text { estimated } \end{gathered}$	Chicken pox, cases ported	Diphtheria		Influenza		$\begin{array}{\|c} \text { Mea- } \\ \text { sles, } \\ \text { cases } \\ \text { re } \\ \text { ported } \end{array}$		Pneamonia deaths ported					
			Cases, estimated expectancy	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported } \end{gathered}$	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported } \end{gathered}$	$\begin{gathered} \text { Deaths } \\ \text { re- } \\ \text { ported } \end{gathered}$								
East norti centralcontinuei														
Wisconsin:														
Kenosha.	56,500	15	1	0		0	80	3						
Milwankee	644,200	131	12	6	2	2	021	16	10					
Superior......	(1)	4	0	0		0	16	0	$\stackrel{1}{2}$					
west north central														
Minnesota:														
Duluth-	116,800	20	0	6		0	22	23	1					
Minncapolis.........	455, 900	58	14	2		0	114	46	4					
Darenport.........	(1)	17	1	4			4	0						
Des Moincs	151,900	1	1	0			4	0						
Sioux City Waterlo	ع0,000	13	0	0			4	0					
Missouri:														
Kansas City .-......-	391.000	10	4	0		0	16	0	10					
St. Joseph -.-.-....--	78,500	1	0	1		0	23	0	1					
North Dakota:														
Fargo--.----...-	${ }^{(1)}$	8	0	0		0	22	0	0					
Grand Forks.......-	(1)	2	South Dakota: $\quad 1 \quad 10 \cdots \cdots$											
South Dakota:	(1)	1	0	0										
Lincoln............-.	71, 100	1	1	1		0	6							
									0					
Topeka	62, 800	21	1	2		0	14							
Wichita..	99, 300	10	1	0		0	102	5	2					
south atlantic														
Delaware:														
Wilmington.	128, 500	0	1	0		0	6	0	2					
Maryland: ${ }_{\text {M }}$														
Baltimore. Cumberland	830,400	58	19	13	4	1	4	140	19					
Frederictand..........--	(1)	0	0	0		0	2		0					
District of Columbia: Washington	552,000	12	8	12		0	27	0						
Virginia:														
Lynchburg.	38,600	8	0	1		0	0	09	0					
Norfolk.-.	184, 200	8	0	1		0	7	34	3					
Richmond...	194,400	4	1	0		0	37	9	2					
Charleston..........							7	0	0					
Wheeling-...-	(1)	18	0	0		0	20	0	3					
Raleigh.....-		0	0	0		0	0	0	0					
Wilmington....-.---	39,100	8	0	1		0	0	0	0					
Charieston.-	75,900	0	0	0	24	0	0	0	1					
Columbia-.	50,600	5	0	0		0	0	3						
Brunswick.	(1)	0	0	0	5	0	8	1	1					
Savannah..	99,900	0	0	0		0	0	0						
		1	3	1		0	42	2	2					
St. Petersburg--...--	53, 300		0			0	42	2	0					
Tampa...........-.-	113, 400	0	0	-3	1	0	3	$1-$	0					

[^9]City reports for week ended June 8, 1929-Continued

[^10]$51332^{\circ}-29-3$

City roporta for week ended fune 8, 1989-Continsted

City reports for week ended June 8, 1929-Continued

City reports for week ended June 8, 1989-Continued

Division, State, and city	Scarlet fover		Smallpox			$\begin{gathered} \text { Tuber- } \\ \text { culo- } \\ \text { sis, } \\ \text { deaths } \\ \text { re- } \\ \text { ported } \end{gathered}$	Typhoid fever			Whoop ing coush cases ported	$\begin{aligned} & \text { Deaths, } \\ & \text { call } \\ & \text { causes } \end{aligned}$				
	Cases esti- mated axpect- ancy	$\left\|\begin{array}{c} \text { Cases } \\ \text { re- } \\ \text { ported } \end{array}\right\|$	Cases, esti- mated expect- ancy	$\begin{gathered} \text { Cases } \\ \text { res } \\ \text { ported } \end{gathered}$			$\begin{aligned} & \text { Cases } \\ & \text { esti- } \\ & \text { mated } \\ & \text { expect- } \\ & \text { ancy } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Cases } \\ \text { rerted } \\ \text { port } \end{gathered}\right.$	Deaths reported						
WEST SOUTH CENTRAL															
Arkansas: Fort Smith Little Rock	1	0	0	0	0	0	0	0	0	0	--.				
Louisiana: New Orleans Shreveport	3	13	0	0	0	9 2	2 1	4	0	1	118 .$\quad 25$				
Texas:															
Dallas........	2	0	2	1	0	3	1	2	1	20	49				
Fort Worth...-	0	6 1	2	2	0	1	0	0	0	8	30 15				
Houston......-	1	4	1	1	0	5	1	1	1	0	82				
San Antonio..-	1	1	0	0	0	7	2	0	0	0	61				
mountain															
Montana:															
Billings........-	0	0	0	0	0	0	0	0	0	0	7				
Great Falls....	1	2	0	0	0	0	0	0	0	0	6				
Melena-......-	0	0	0	0	0	2	0	0	0	0	5				
Idaho:															
Boise...-	0	1	0	0	0	1	0	0	0	5	7				
Colorado:															
Pueblo.....-- 1 0 0 0 0 2 0 0 0 0 0 11															
Reno.........--		0	0	0	0	0	0	0	0	0	2				
PACIRIC															
Washington:															
	22	42	6	1	0	28	2	1	0	32	256				
Sacramento...-	1	14	1	0	0	1	1	0	0	7	23				
	15	48	1	0	0	10	1	3	0	22	149				
Menin- gococcus meningitis Lethargic encephalitis PellagraPoliomyelitis (infan- tile paralysis)															
Division, State, and city															
			Cases	Deaths	Cases	Deaths	Cases	Deaths	mated expectancy	Cases	Deaths				
new england															
Massachusetts: Beston.			0	0	1	0	0	0	0	0	0				
middle at	lantic														
New York: New York			12	9	1	3	0	0	1	1	0				
New Jersey: Newark.						0	0	0							
Pennsylvania:						0	0	0	0	1	0				
Philadelphia_........................-			4	4	1	0	0	0	0	0	0				
			3	5	0	0	0	0	0	0	0				

City reports for week ended June 8, 1929-Continued

Division, State, and city	Meningococcus meningitis		Lethargic encephalitis		Pellagra		Poliomyelitis (infantile paralysis)		
	Cases	Deaths	Cases	Deaths	Cases	Deaths	Cases, estimated expectancy	Cases	Deaths
gast norti central									
Ohio:									
Cincinnati.	0	1	0	0	0	0	0	0	0
Cleveland.	5	2	1	0	0	0	0	2	0
Chicago.......................--Michigan:									
Detroit	33	10	0	0	0	0	0	0	0
Flint---	7	1	0	0	0	0	0	0	0
Grand Rapids.	0	1	0	0	0	0	0	0	0
Wisconsin: Milwaukee	2	1	0	0	0	0	0	0	0
west north central									
Kansas City--	6	4	0	0	0	0	0	0	0
St. Louis..-	6	1	0	0	0	0	0	0	0
Fargo-.---	1	0	0	0	0	0	0	0	0
gouth atlantic									
	1	0	0	0	0	0	1	0	0
District of Columbia:	0	0	0	0	0	0	0	1	1
Virginia:								0	0
North Carolina:									
Raleigh...--.-	0	0	0	0	0	2	0	0	0
W inston-Salem	0	0	0	0	1	1	0	0	0
South Carolina:									
Columbia.-	0	0	0	0	0	1	0	0	0
Georgia:									
Atlanta--	1	0	0	0	0	0	0	0	0
Savannah.	0	0	0	0	1	1	0	0	0
Florida: Miami.	0	0	0	0	1	0	0	0	0
EAST SOUTH CENTRAL									
Alabama:									
Birmingham	0	0	0	0	0	0	0	1	0
Mobile.	0	0	0	0	0	1	0	0	0
Montgomery -.....-.-.........	0	0	0	0	3	0	0	0	0
West south central									
Louisiana:									
Oklahoma: Oklahoma City					0				
Fort Worth.......	0	0	0	0	1	0	0	0	0
Houston.-.	0	0	0	0	0	0	0	1	0
Monartans									
Montana: Great Falls	1	0	0	0	0	0	0	0	0
Colorado: Denver	1	1	0	0	0	0	0	0	0
Washington. PACIFIC									
Washington:									
Seattle....-	2	0	0	0	0	0	0	0	0
California:									
Sacramento.	2	1	0	0	0	0	1	0	0
San Francisco..--.-.-......	1	1	1	0	0	0	0	0	0

1574

The following table gives the rates per 100,000 population for 98 cities for the 5 -week period ended June 8, 1929, compared with those for a like period ended June 9, 1928. The population figures used in computing the rates are approximate estimates, authoritative figures for many of the cities not being available. The 98 cities reporting cases have estimated aggregate populations of more than $31,000,000$. The 91 cities reporting deaths have nearly $30,000,000$ estimated population. The number of cities included in each group and the estimated aggregate populations are shown in a separate table below.

Summary of weekly reports from cities, May 5 to June 8, 1929-Annual rates per 100,000 population, compared with rates for the corresponding period of 1988^{1}

DIPHTHERIA CASE RATE

	Week ended-									
	$\begin{gathered} \text { May } \\ 11 . \\ 19 \Sigma 9 \end{gathered}$	$\begin{gathered} \text { May } \\ 122 \\ 1928 \end{gathered}$	$\begin{gathered} \text { May } \\ 18 \\ 1929 \end{gathered}$	$\begin{gathered} \text { May } \\ 192, \end{gathered}$	$\begin{gathered} \text { May } \\ 25,9 \\ 1929 \end{gathered}$	$\begin{gathered} \text { May } \\ 28,5 \\ 1928 \end{gathered}$	$\begin{aligned} & \text { June } \\ & 19 \dot{1} 9 \end{aligned}$	$\begin{gathered} \text { June } \\ 2, \\ 1928 \end{gathered}$	$\begin{gathered} \text { June } \\ 8, \\ 1929 \end{gathered}$	$\begin{gathered} \text { June } \\ 9.928 \\ 1928 \end{gathered}$
98 cities	139	123	2124	139	136	131	'125	124	110	136
New Enjand.	118	113	95	110	109	64	491	99	72	97
Middle Athantic.	206	178	159	205	188	213	168	178	148	221
East North Central	145	169	143	114	165	102	155	105	123	108
West North Central	104	55	${ }^{2} 124$	96	100	72	110	84	98	58
South Atlantic.	64	90	62	111	49	117	41	101	54	107
East South Central.	27	42	27	21	14	42	7	63	20	28
West South Central	91	93	115	65	47	28	59	57	91	61
Mountain....-...-	52	71	26	97	61	71	${ }^{5} 38$	71	61	35
Pacific.-	40	102	57	120	62	92	60	107	57	115

MEASLES CASE RATES

98 cities	897	1,379	2889	1,351	806	1,309	${ }^{3} 663$	1,218	737	1,023
New England	484	1,120	434	1,159	556	1,290	- 389	1,129	606	952
Middle Atlantic	186	2,261	186	2,281	194	2,192	183	2,170	169	1,771
East North Central	2,191	787	2,135	680	2,283	772	1,505	660	1,825	687
West North Central	1,548	941	21,714	1,121	1,440	943	1,052	755	1,059	597
South Atlantic.	521	1,781	474	1,536	242	1,320	298	1,112	238	892
East South Central	41	814	68	1988	27	1743	54	1, 596	41	435
West South Central.	379	340	244	272	447	283	245	178	415	61
Mountain	296	1,143	183	1,152	313	833	${ }^{6} 254$	992	192	735
Pacific.	436	328	439	264	546	304	412	217	422	174

SCARLET FEVER CASE RATES

98 cities	291	254	2291	253	269	233	2271	209	200	193
New England	262	347	249	292	283	206	4276	248	192	290
Middle Atlantic.	209	285	219	279	126	268	196	201	135	191
East North Central	453	265	472	272	448	254	446	227	321	257
West North Central	277	243	2284	280	208	207	179	233	165	164
South Atlantic.	244	172	210	207	159	176	274	191	300	157
East South Central	129	126	102	77	136	84	122	335	95	49
West South Central	320	186	186	219	122	207	166	146	79	18
Mountain.	52	115	104	133	113	18	${ }^{5} 103$	71	78	103
Pacific.	292	205	307	143	347	130	254	148	279	156

[^11]Summary of weekly reports from cities, May 5 to June 8, 1929-Annual rates per 100,000 population, compared with rates for the corresponding period of 1928Continued

SMALLPOX CASE RATES

TYPHOID FEVER CASE RATES

98 cities.	11	8	29	6	8	8	87	12	8	9
New England.	11	5	9	7	7	11	42	57	7	2
Middle Atlantic.	3	2	6	4	5	6	3	1	5	10
East North Central	6	3	3	2	3	5	3	3	3	7
West North Central.	31	8	26	2	8	4	17	4	8	4
South Atlantic.	15	21	17	6	15	6	19	17	17	11
East South Central	27	28	0	28	75	14	34	91	27	14
West South Central.	55	16	67	4	12	12	20	32	28	32
Mountain.	0	18	0	0	17	0	${ }^{1}$	0	0	9
Pacific.	7	31	7	23	10	36	2	18	12	10

INFLUENZA DEATH RATES

PNEUMONIA DEATH RATES

91 cities.	110	219	2106	196	116	181	${ }^{3} 106$	147	01	130
New England	90	258	88	207	122	253	- 108	172	66	168
Middle Atlantic	123	268	114	219	129	212	113	183	105	148
East North Central	101	232	115	222	118	174	101	129	96	115
West North Central	105	181	273	132	123	128	120	89	81	95
South Atlantic.	109	86	120	155	94	119	112	136	67	132
Bast South Central	148	245	89	261	104	253	111	153	59	161
West South Central.	97	166	114	125	69	146	60	129	93	108
Mountain.	87	133	113	97	139	124	- 122	106	61	89
Pacific.	88	88	49	104	85	91	66	71	72	81

[^12]Number of cities included in summary of weekly reports and agregate population of cities of each group, approsimated as of July 1, 1989 and 1928, respectively

Group of cities	Number of cities reporting cases	Number of cities reporting	Aggregate population of cittes reporting cases		Aggregate population of citles reporting deaths	
			1929	1928	1929	1928
Total.	98	91	31, 568, 400	31,052, 700	29,995, 100	29, 408, 600
New England.	12	12	2,305,100	2. 273, 900	2,305, 100	2, 278, 900
Middle Atlantic.	10	10	10, 809, 700	10, 702, 200	10,809, 700	10,702, 200
Eest North Central	16	16	8,181,900	8,001, 300	8,181,900	8,001,300
West North Central	12	9	2, 712, 100	2, 673, 300	1,735,900	1,708, 100
South Atlantic.-.	19	19	2,788, 200	2, 732, 900	2, 788, 209	2, 732, 900
Eest South Central	8	5	767,900 1	745,500	704,200	688, 400
West South Central Mountain.	8	7	1,319,100	$1,289,900$ 590,200	$1,285,000$ 598,800	$1.256,409$ 500,200
Pacific.	6	4	2,090, 000	2,043, 560	1,590,300	1,551,200

FOREIGN AND INSULAR

CANADA

Provinces-Communicable diseases-Weck ended June 8, 1929.The Department of Pensions and National Health reports cases of certain communicable diseases from eight Provinces of Canada for the week ended June 8, 1929, as follows:

Disease	Prince Edward Island	Nova Scotia	New Branswick	Quebec	Ontario	Manitoba	Alberta	British Columbia	Total
Cerebrospinal tever.		2			3			2	
Dysentery...-.........-	1	-...-.							
Influenga - Lethargic encephalitis				3	4	1			
Poliom yelitis..........								1	
Smallpox-......				5	15	6	8	2	36
Typhoid fever.			1	12	22		2--	37

Quebec Province-Communicable diseases-Week ended June 8, 1989.-The Bureau of Health of the Province of Quebec reports cases of certain communicable diseases for the week ended June 8, 1929, as follows:

Disease	Cases	Disease	Cases
Chicken pox	70	Mumps	58
Diphtheria...	37	Scartet fever.	128
German measles.	22	Sinallpox--.-	5
Infuenza------7--7--	3	Tuberculosis...	12
Lethargic encephaitis	112	Typhoid fever-	18

Quebec Province-Vital statistics-March, 1929.-Births, deaths, and marriages for the month of March, 1929, with deaths from certain diseases for the same month, are shown in the following table:

March, 1989		March, 1929-Continued	
Estimated population.	191, 050	Deaths from-Continued.	
Births.	6, 912	Inftuenza.	234
Birth rate per 1,000 population.	30.2	Lethargic encephalitis.-.-.---.-.----	2
Deaths.	3,173	Measles.	10
Death rate per 1,000 population.	13.9	Pneumonia.	359
Infant mortality rate.	124.4	Poliomyelitis.	1
Marriages.	379	Scarlet fever	19
Deaths from-		Smallpor	0
Cancor.-	145	Syphilis	10
Cerebrospinal meningitis.	7	Tuberculosis (pulmonary)............	227
Diabetes.	25	Tuberculosis (all other forms).....--	72
Diarchea	106	Typhoid fever...-.-.-.........-...---	26
Diphtheria.	29	Violence.	61
Heart disea	348	Whooping cough	11

Quebec Province—Vital statistics-Years 1926, 1927, and 1928.-The numbers of births, stillbirths, marriages, deaths, and maternal deaths, with rates, in the Province of Quebec, Canada, for the years 1926, 1927, and 1928, are given in the following table; also the deaths and death rates per 100,000 population for certain causes of death:

	1928		1927		1928	
	Total	Rate	Total	Rate	Total	Rate
Births	82, 165	32.1	83, 064	31.9	83, 582	31.6
Still births ${ }^{\text {d }}$	1,914	23	2,114	25	2,321	28
Marriages	17, 827	7.0	18, 517	7.1	19, 125	7.2
Deaths (total)	37, 251	14.5	36, 175	13.9	36,664	13.9
Deaths under 1 year ${ }^{1}$	11, 668	1420	10,739	129.3	10, 216	122.2
Deaths (maternal) ${ }^{1}$	427	5.2	403	4.9	410	4.9
Deaths from-						
Cancer	1,840	71.8	1,909	73.3	2, 005	75.7
Heart disease	2,879	1124	2,873	110.3	3,050	115.2
Tuberculosis (all forms)	3, 227	127.9	3,145	120.8	3.197	120.8
Violence.---	1,403	54.8	1,497	57.5	1,506	57.0

${ }^{1}$ The infant mortality rate and the maternal death rate are per 1,000 births, and the still birth rate is per 100 births. The birth and total death rates are per $\mathbf{1 , 0 0 0}$ population.

CANARY ISLANDS

Las Palmas-Vital statisties-March, 1929.-During the month of March, 1929, 195 births, 163 deaths, and 9 stillbirths were reported at Las Palmas, Canary Islands. Deaths from certain diseases during the month were as follows:

March, 1929

Disease	Deaths	Disease	Deaths
Cancer	1	Measles	13
Cirrhosis of the liver	3	Meningitis, simple.	9
Diarrnea and enteritis.	28	Pneumonia.	20
Diarrhea under 2 years.	2	8yphilis.-.-.-.-.--	7
Heart diseases........-	16	Tuberculosis, other forms.	13 2

CHINA

Meningitis.-During the week ended June 8, 1929, 12 cases of meningitis and 10 deaths were reported at Canton, China. At Shanghai, during the week ended June 15, there were 4 admissions to the hospital and 7 deaths from meningitis.

ENGLAND AND WALES

Smallpox.-The following table shows the number of cases of smallpox reported in England and Wales by four-week periods for 1929, and for the corresponding periods of the years 1927 and 1928. During the four weeks ended January 26, 1929, the prevalence of smallpox was considerably lower than-in the corresponding periods of the two
preceding years, but the number of cases reported increased with each four-week period until, during the four weeks ended May 18, 1929, the number of cases was but slightly lower than the number reported for the corresponding period of 1928. and higher than that reported for the corresponding period of 1927.

Cases of smallpox reported in England and Wales by 4-week periods

Four weeks ended-	19\%	1928	1927
Jan. 28, 1929; Jan. 28, 1928; Jan. 29, 1927	811	1,448	2. 177
Feb. 23, 1929; Feb. 25, 1928; Feb. 28, 1927	986	1,516	1,807
Mar. 23, 1929; Mar. 24, 1928; Mar. 26, 1927	1,151	1,413	1,775
Apr. 20, 1929; Apr. 21, 1928; Apr. 23, 1927	1,309	1,287	1, 4×3
May 18, 1920; May 19, 1928; May 21, 1927	1,349	1,352	1,192
Total, 20 weeks.	5,606	7,016	8, 434

The following table shows the number of cases of smallpox reported in England and Wales during the years 1924-1928:

Cases of smallpox reported

JAMAICA
Communicable diseases-Four weeks ended May 25, 1929.-During the four weeks ended May 25, 1929, cases of certain communicable diseases were reported in Kingston, Jamaica, and in the Island of Jamaica outside of Kingston, as follows:

Disease	Kingston	Other localities	Disease	Kingston	Other localities
Chicken pox	5	39	Puerperal fever...		2
Dysentery-...	2	4	Smallpox--.-...........		48
Erysipelas		1	Tuberculosis (pulmonary)	48 31	48 100
Leprosy.		1	Typhoid fever-.---...----	31	100

PHILIPPINE ISLANDS

Meningitis.-During the week ended June 17, 1929, 1 case of meningitis occurred in a Province near Manila. The case was brought to the Manila hospital.
CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER
From medical officers of the Public Health Service, American consuls, health soction of the League of Nations, and other sources. The reports contained in the following table
must not be considered as complete or final as regards either the list of countries included or the figures for the particular countries for which reports are given:
[C indicates cases; D, deaths; P, present]

Place	$\begin{aligned} & \text { Nov. 18- } \\ & \text { Dec. 15, } \\ & 1928 \end{aligned}$	Dec. 16, 1028$\underset{1929}{ }{ }^{12}$,	$\begin{aligned} & \text { Jan. 13- } \\ & \text { Feb. } 9, \\ & 1929 \end{aligned}$	$\begin{gathered} \text { Feb. } 10- \\ \text { Mar. } 9, \\ 1029 \end{gathered}$	Week ended-											
					March, 1929			April, 1929				May, 1929				$\begin{gathered} \text { June } \\ 1920 \end{gathered}$
					16	23	30	6	13	20	27	4	11	18	25	
		7		4									2	1		
		4	2	4								1	2	1		
		1			1	1	1		1		1	1	1			1
China: Canton. India		17, ${ }^{1}$									1	1	1			
	14,950	17,038	12,566 7,912	7, 4,425	1,905	2, 130 1,165	2,036	2,, 975 1,704	3,110 1,886	4, 231						
				1, 6	1 1	1, 3	12 4	29 1	, 28	2, $\begin{array}{r}47 \\ 2\end{array}$	${ }^{23}$	22	23	13		
Calcutta................................ ${ }_{\text {- }}^{\text {- }}$	247	103	129	261			154	135					1			
	155	61	85	144	${ }^{56}$	+83	79	89	${ }_{96}$	187	109	159	175	156	171	
	102	16	4	9									1			
Madras Presidency-.................... ${ }_{\text {- }}^{\text {D }}$	4	17	5	4												
	1															
Moulmein Negapatam \qquad \qquad D	1	6	18	1	4	1	1	1		4	1	1		6	11	-...........
Rangoon................................- $\mathbf{C}_{\mathbf{D}}^{\mathbf{D}}$	1		15	13		6	5	1								
	3	5	9	6	2	6	28	1	4	2	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	2	2	3	1	--...-....-
	2	115	85 52	${ }_{4}$												
India (French): Chandernagor \qquad							1		1		2		1			
	10	4			1	1	1		1				1		1	
	7 4	54	150	88_{1}^{-1}	14	6 3			3	--.-.						
Pondicherry Province..................- ${ }_{\text {C }}$	37	92	139	86	130	12	4		3							
-	30	55	104	74	24	10	4							1		1
Indo-China (see also table below): Pnompenh. $\underset{\mathbf{D}}{\mathbf{C}}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	6 1	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 42 \\ & 36 \end{aligned}$	\cdots	2	3 3	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3 1	8 5	3 2	1	5 5	3		4

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued
[C indicates cases; D, deaths; P, present]

Java- Batavia and West Java	43	54 53	74 73	70	21	17	13 14	13 14	14	20	14				5		
Plagup-infected rats Tast java and Madura	1	-...----		4	--70	2	-------	3 1	5	3							
D						1		1									
Surabaya....-.-.-.-.........-	$\overline{1}$	-------------	6														
Kediri Residency \mathbf{C}			\mathbf{P}														
Ecuador (see table below), Egypt:																	
Alaxandria + +......................... $\underset{D}{\mathbf{D}}$			3										1				
	-7 1		1 3 3			\cdots				5	-		---.....-				
														3	4	2	1
Grga .																	
	4																
		-									1	1	1		1	1	
Guez...-7.-.				1	------		1					1	1				
Greece (see also table helpw Cortu. \qquad																	
	7,767								2, 434	2,069							
	4,803	5, 234	9,815	12, 064	3, 021	3,247 2	2, 835	3,489	1,915	1,646 2				2			
Bassein Bombay	-4	1	4 2 4	3 4 4	1 1	[2	[1 2 1	3	2		- 1		2			
Plagua-infected rats	6 32	35	$\begin{array}{r} 4 \\ 38 \end{array}$	4 38	1 9	3 17	18 18		3 18	20	28	17		- 23	1		
Cochin		10															
Madras Presidency	686 307	500 231	434 235	333 189	50 32	43	32	7	13	8	5						
	30 1 1	rer ${ }^{2} 1$	235 4 5	189 4 4		$\begin{array}{r}27 \\ 3 \\ \hline\end{array}$	18 5 3	3 4 3	5 5 6	4	2 2 2	3					
Plague-infected rats...-.-......-			5	11		2	6	5	3	1	2	4		2	2		
Indo-China (see also table below): Pnompenh.	4	8	- 10	5	3	2	4	1		3 3	5		1	4			
Saigon	4	6	9	3	3	2	4.	1		3	5			2	-		
Salgon. Tourane				5													
Baghdad \qquad	10	8	6 8 8	10	4	5 2			1	1	2	4 3	5 2	4 3	1	4	
Plague-infected rats Diyalah Liwa.			6	22		2	2		2	2							
D									4	3							
Naudham...-........-.-.........-				----------													

[^13]CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued PLAGUE-Continued

Place	$\begin{aligned} & \text { Nov. 18- } \\ & \text { Dec. 15, } \\ & 1928 \end{aligned}$	$\begin{gathered} \text { Dec. } 16, \\ 1928 \text {, } \\ \text { Jan. 12, } \\ 1929 \end{gathered}$	$\begin{gathered} \text { Jan. 13- } \\ \text { Feb. } 9, \\ 1929 \end{gathered}$	$\begin{aligned} & \text { Feb. 10- } \\ & \text { Mar. } 9, \\ & 1929 \end{aligned}$	Week ended-												
					March, 1929			A pril, 1929				May, 1029				June, 1020	
					16	23	30	6	18	20	27	4	11	18	25	1	8
Japan: Osaka-Plague-infected rats................																	
Madagascar (see also table below): Tamatave.		2	1													P	
Morocco............................... ${ }_{\text {- }}^{\mathbf{D}}$	1			2		22	59	25		19					29		
Nigeria:						14	43	16		12		4	1	3			-
Nigeria.	43	12	14	11	1	1	1	1	4	1	1	2		2			
Plague-infected rats.........---	41 30	11 28	12 48	11 50	13	1	1 3	1	4	1	1	2		2			
Peru (see table helow). Senegal (see table below).																	
Siam..................................- ${ }_{\text {D }}^{\text {C }}$	9 8			9	-	2	4	3	5	2	1	2		1			
Bangkok..........................- ${ }^{\text {d }}$	8	3 4	17	9 1		2	4	2	3	3	1	1	1				
Nagara Pathom.................. ${ }_{\text {d }}^{\text {D }}$			2	1	-		4					-	1-			--.....
Panknampo..................... ${ }_{\text {d }}^{\text {D }}$	8			2			4		1		1		2				
Straits Settlements: Singapore..............................				1							1						
Union of Socialist Soviet Republics: Ural-Kirghiz				1							1						\boldsymbol{P}
Union of South,Africa: Cape Province.	1	4	6	2	\mathbf{P}	1	1		1 3	1		1					2
Transvaal........................ ${ }^{\text {C }}$		3	1			5	2			1							
D						5	3										
Uruguay: Montevideo \qquad							4										

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued
[C indicates cases; D, deaths; P, present]

Place	$\begin{array}{\|c\|c\|} \text { Dec. 16, } \\ \text { 1028. Jan. } \\ \text { 12, } 1929 \end{array}$			Week ended-													
				March, 1929			April, 1929				May, 1929				June, 1920		
				16	${ }_{23}$	30	6	13	20	27	4	11	18	25	1	8	16
				3													
	7	2	2	1					P								
			1						P								
			1		2												
Morgcoo (seo tabio below). Nicaragua: Managua.																	
								P									
Nigeria: Lagos..				1					1								
		162															
		31						2									
								2							i		
						P											
	- 1	$4{ }_{3}$						2		4			1				
	2			3				2		2					1		--.-
	19	2	4						1	7	47						
Somaliland, British: Beqales spain: Valencia. Stroits Settlements: Singapora Sudan (Anglo-Egyptian) \qquad																	
			-		4	1											
	491 57	$\begin{gathered} 285 \\ 34 \end{gathered}$	188 54	30 6	${ }_{2}^{22}$	37 6	$\begin{gathered} \mathrm{i}_{156} \\ 15 \end{gathered}$	${ }_{17}^{127}$	188 3	${ }_{3}^{12}$	100 3	$\stackrel{162}{5}$	$\stackrel{204}{48}$	$\stackrel{809}{28}$	835 51	328 40	${ }_{60}^{24}$
Sudan (French) (see table below). Syria (see table below). Tunisia: Tunis \qquad C																	
	14		5						2								
Union of Socialist Soviet Republics: Vladivostok															2		
Vhadivostok. Union of South Africa: Cape Province..																	

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

Place	Nov. $18-$Dec. 15, 1928	$\begin{gathered} \text { Dec. 16, } \\ 1988- \\ \mathrm{J}_{3} .12, \\ 1929 \end{gathered}$	$\begin{aligned} & \text { Jan. 13- } \\ & \text { Feb. } \\ & 1929, \end{aligned}$	$\begin{aligned} & \text { Feb. } 10- \\ & \text { Mar. } 9, \\ & 1929 \end{aligned}$	Week ended-																
					March, 1929			April, 1929				May, 1929				1, ${ }_{\text {June }}$					
					16	23	30	6	13	20	27	4	11	18	25						
Algeria:																					
Algiers 					P^{3}	$\frac{1}{2}$	2	4	2	3	2	1								
Oran.. ${ }^{\text {c }}$										2	1	${ }^{5}$		12		2					
Bulgaria.. d $_{\text {D }}$	9	5	7	${ }_{2} 9$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	${ }_{3}^{18}$	10	1	${ }^{5}$	18	7		10	7							
			1																		
	1																				
Canton.. $\mathrm{C}_{\text {- }}$			2																		
Harbin... ${ }_{\text {C }}^{\text {C }}$	2			1		1															
Crechoslovakia (see table Delow). Egypt:																					
Alexandria..- d $_{\text {D }}$					1						1										
Assouan Prorince................................. ${ }_{\text {C }}^{\mathbf{D}}$													1								
Beheira Province...				2 13									23								
Daqahliya Province... ${ }_{\text {D }}^{\text {D }}$								9	9					18	6						
Daqahliya Province..............................-- C		11			34																
Charbieh... ${ }^{\text {C }}$			1	2																	
Menouneh Province.............................. ${ }_{\text {C }}^{\text {C }}$										35											
Cavan County-Carrickmacross Cort Connty \square													1								

Cholera, plague, smallpox, typhus fever, and yellow fever-Continued

${ }_{1}^{1}$ Imported. 29 cases of yellow fever with 14 deaths were reported at Rio de Janeiro during January, 1929, mostly suburban.

[^0]: ${ }^{1}$ From the Office of Statistical Investigations, U. S. Public Health Service, in cooperation with the Department of Biometry and Vital Statistics (Paper No. 134), School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Md.

 2 Preceding Hagerstown Morbidity Studies published are-
 I. A Study of Illness in a General Population Group: Method of Study and General Results. Pub. Health Rep., vol. 41, No. 39, Sept. 24, 1926. Reprint No. 1113.
 II. The Reporting of Notifiable Diseases in a Typical Small City. Pub. Heath Rep., vol. 41, No. 41, Oct. 8, 1923. Reprint No. 1116.

[^1]: 1 Average number of persons under observation at indicated ages in the survey.
 2 Includes 1 unknown age.

[^2]: ${ }^{1}$ Excludes a few cases in which it was not known whether a physician was in attendance.
 ${ }^{1} 1$ unknown age in total.

[^3]: Whenever, in the judgment of the board of trustees of any school district of the third class, it is desirable to select $* * *$ a schoolnouse site, or

[^4]: Deaths for week ended Friday.
 ${ }^{6}$ In the cities for which deaths are shown by color, the colored population in 1920 constituted the following percentages of the total population: Atlanta, 31; Baltimore, 15; Birmingham, 39; Dallas, 15; Fort Worth, 14; Houston, 25; Indianapolis, 11; Kansas City, Kans, 14; Knoxville, 15; Louisvllle, 17; Memphis, 38; Nashville, 30; New Orleans, 26; Richmond, 32; and Washington, D. C., 25.

[^5]: ${ }^{1}$ New York City only.
 2 Week ended Friday.
 ${ }^{2}$ Figures for 1929 are exclusive of Oklahoma City and Tuisa, and for 1928 are exclusive of Tulsa only.

[^6]: ${ }^{1}$ Pulmonary.
 ${ }^{2}$ Report not received at time of going to press.
 a Reports received weekly.

[^7]: 4 Exclusive of Oklahoma City and Tulsa.
 ${ }^{6}$ Includes 11 cases from sanitoria.

 - Reports received annually

[^8]: 1 No estimate of population made.

[^9]: ${ }^{1}$ No estimate of population made.

[^10]: ${ }^{1}$ No estimate of population made.

[^11]: ${ }^{1}$ The figures given in this table are rates per 100,000 population, annual basis, and not the number of cases reported. Populations used are estimated as of July 1, 1929 and 1928, respectively.
 ${ }^{2}$ Fargo, N. Dak. not included.
 ${ }_{3}$ Pawtucket, R. I., and Pueblo, Colo., not included.
 4 Pawtucket, R. I., not included.

 - Pueblo, Colo., not included.

[^12]: ${ }^{2}$ Pargo, N. Dak. not included.

 - Pawtucket, R. I., and Pueblo, Colo., not included.
 - Pawtucket, R. I., not included.

 S Pueblo, Colo., not included.

[^13]: 218 plague-infected rats were reported at Buenos Aircs, Argentina, from July 1 to Dec. 31, 1928.
 i Unofficial report.

